skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mailybaev, Alexei A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter$$\nu $$: the regularized dynamics is globally defined for each$$\nu> 0$$, and the original singular system is recovered in the limit of vanishing$$\nu $$. We prove that this limit yields aunique statistical solutionindependent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution. 
    more » « less